

Threshold Concents This second	Voor 2	Voor 4	Voor 6
involves understanding circuits and their role	real Z	real 4	real o
in electrical applications.			
KS1	• Electricity is a form of energy,	• Electricity is a form of energy,	Recognise circuit symbols in a
 Identify common appliances 	used for lighting, heating,	used for lighting, heating, making	simple circuit- identify the simple
that run on electricity.	making sound and making	sound and making machines and	circuit used in a hand torch
 Construct a simple series 	machines and appliances	appliances work.	Electric current is measured in
electrical circuit.	work.	Some appliances run on	amperes, current is a flow of
LKS2	 Pylons and cables carry 	electricity; some plug into the	charge
 Identify common appliances that 	electricity through the	mains electricity and others run	 Associate the brightness of a
run on electricity.	countryside, some electricity	on batteries.	lamp or volume of a buzzer with
 Construct a simple series electrical 	cables in busy cities are	• An electrical circuit consists of a	the potential difference in a
circuit, identifying and naming its	buried underground	cell or battery connected to a	circuit
basic parts, including cells, wires,	 Appliances are devices that 	component using wires.	 Investigate the brightness of a
bulbs, switches and buzzers.	run on electricity and they	A series circuit is where all the	bulb if the PD is increased or the
 Identify whether or not a lamp will 	should be used safely	components of the circuits are	number of bulbs increased in a
light in a simple series circuit, based	(includes, no frayed wires,	joined in one loop. If one part of	series circuit
on whether or not the lamp is	avoid spillages and keep away	the loop is incomplete, then the	 Investigate how the length of
part of a complete loop with a	from water, not putting	circuit will not work	wire affects the brightness of a
battery.	objects into sockets	Names of components include	bulb.
 Recognise that a switch opens and 	 Compare life in a village that 	cells, wires, bulbs/ lamps,	Potential difference is measured
closes a circuit and associate this	has no electricity	switches and buzzers	in volts
with whether or not a lamp lights in	• A circuit is a complete path	 A cell is a single unit, and a 	• Resistance, measured in ohms, as
a simple series circuit.	around which electricity can	battery is a collection of cells	the ratio of potential difference
 Recognise some common 	flow	• One way to test to see if a circuit	(p.d.) to current
conductors and insulators, and	Circuits contain components	is complete is to use a bulb/lamp,	Differences in resistance between
associate metals with being	like wires, switches and bulbs.	if the lamp turns on then the	conducting and insulating
good conductors.	, , , , , , , , , , , , , , , , , , ,	circuit is complete.	components (quantitative)

Progression of skills science - Electricity

UKS2	Switches open and close circuits. Separation of positive or negative
 Associate the brightness of a lamp 	When a switch is open the charges when objects are rubbed
or the volume of a buzzer with the	bulb/lamp will not light up as the together: transfer of electrons,
number and voltage of cells used in	series circuit is incomplete. forces between charged objects
the circuit.	Wires are made from metals as The idea of electric field, forces
 Compare and give reasons for 	they are good conductors of acting across the space between
variations in how	electricity e.g., iron, copper and objects not in contact
components function, including the	steel
brightness of bulbs, the loudness	 Insulators are materials that do
of buzzers and the on/off position of	not allow electricity to pass
switches.	through them easily e.g., plastic,
 Use recognised symbols when 	wood, rubber and glass.
representing a simple circuit in a	 Thomas Edison invented the first
diagram.	practical incandescent light bulb

Progression of skills to KS3 are detailed on electricity/ trust science sheets

Links from Reception Development Matters are detailed on the Reception Termly Planning Document